

ACR1011 SIMicro (CCID) Smart Card and Micro SD Reader

Reference Manual V1.01

info@acs.com.hk www.acs.com.hk

Table of Contents

1.0.	Introduction	3
1.1. 1.2. 1.3. 1.4.	SIM-sized Smart Card Reader Memory Storage Device Contactless Feature Ease of Integration	3 3
2.0.	Features	4
3.0.	System Block Diagram	5
4.0.	Power Supply	6
4.1.	Status LED	6
5.0.	Smart Card Interface	7
5.1. 5.2. 5.3. 5.4. 5.5.	Smart Card Power Supply VCC (C1) Programming Voltage VPP (C6) Card Type Selection Interface for Microcontroller-Based Cards Card Tearing Protection.	7 7 7
6.0.	USB Interface	8
6.1. 6.2.	Communication Parameters Endpoints	
7.0.	Communication Protocol	9
7.1. 7.1. 7.1. 7.1. 7.2.	2. CCID Bulk-IN Messages	11 16 18
Appen	dix A. Supported Card Types	20
Appen	dix B. Response Status Codes	21

List of Figures

Figure 1 : ACR100I System Block Diagram

Page 2 of 21

1.0. Introduction

The ACR101I SIMicro (CCID) is more than just your ordinary SIM-sized smart card reader. With the combination of a smart card reader and a Micro SD card slot in a compact USB token, ACR101I SIMicro (CCID) provides you with complete support for highly secured mobile applications. Furthermore, it has an embedded MIFARE® Classic (1K) chip that allows the device to be used for contactless applications such as logical and physical access. ACR101I SIMicro (CCID) is also available in HID, bringing you the same plug-and-play convenience, which does not require any special driver installation.

1.1. SIM-sized Smart Card Reader

ACR101I SIMicro (CCID) is a compact and powerful reader with its reliable support for ISO 7816 microprocessor smart cards. It works with most memory cards and microprocessor cards with the T=0 and T=1 protocol.

With security as its top priority, the ACR101I SIMicro (CCID) gives you the option to integrate highly secured technologies, such as PKI (Public Key Infrastructure), into your applications for maximum protection of sensitive data.

1.2. Memory Storage Device

Aside from being a SIM-sized smart card reader, ACR1011 SIMicro (CCID) is also a storage device. With a dimension of 72.0 mm \times 26.0 mm \times 11.7 mm, this USB-powered device can be brought anywhere and used without any cable. The ACR1011 SIMicro (CCID) is also capable of supporting up to 8 GB expandable Micro SD memory.

1.3. Contactless Feature

The ACR1011 SIMicro (CCID) has an embedded MIFARE Classic 1K chip which enables it to act as a contactless card. Its contactless attribute allows flexibility in using this powerful device in a wide array of applications, such as physical and logical access control.

1.4. Ease of Integration

With ACR101I SIMicro (CCID) being compliant with the (CCID) Chip/Smart Card Interface Devices and PC/SC standards, it is easier to integrate in a computer-based environment by eliminating driver installation prior to use. In addition, ACR101I SIMicro (CCID) may now be used on mobile devices running the Android[™] platform with versions 3.1 and above.

With its wide array of features, ACR101I SIMicro (CCID) can be used in various application areas, such as Public Key Infrastructure, network security and GSM management.

Page 3 of 21

2.0. Features

- USB Combo Device Works as a smart card reader and mass storage
- USB 2.0 High-speed Interface
- Bus-powered No need for separate power supply or battery
- Plug and Play CCID support brings utmost mobility
- Extractable USB Connector
- Smart Card Reader:
 - o Supports ISO 7816 Class A, B and C (5 V, 3 V, 1.8 V) SIM-sized cards
 - Supports microprocessor cards with T=0 or T=1 protocol
 - o Supports memory cards using Synchronous Card APDU
 - Supports Specification 11.11-compliant GSM cards
 - o Supports PPS (Protocol and Parameters Selection)
 - Features Short Circuit Protection
- Application Programming Interface:
 - o Supports PC/SC
 - Supports CT-API (through wrapper on top of PC/SC)
- Flash Drive:
 - o Supports Micro SD cards
 - o Maximum of 8 GB memory
- Contactless Feature:
 - Embedded MIFARE Classic (1K) chip
- Supports Android[™] 3.1 and above¹
- Compliant with the following standards:
 - o ISO 7816
 - o CE
 - o FCC
 - o VCCI
 - o PC/SC
 - o CCID
 - o Microsoft® WHQL
 - o RoHS 2
 - o REACH

Page 4 of 21

¹ PC/SC and CCID support are not applicable

3.0. System Block Diagram

The USB Hub Controller is the communication interface between the personal computer and the MCU of the smart card and flash memory via USB port connection. The 1 GB flash memory is available for the end-user to use as storage. In Windows Explorer, the device is detected as a removable disk. The ACR101 (CCID) is powered from the USB port without other external power supply.

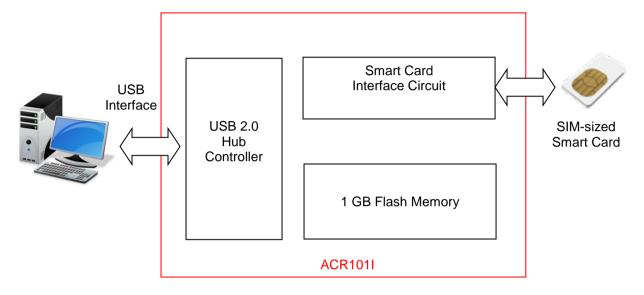


Figure 1: ACR100I System Block Diagram

Page 5 of 21

4.0. Power Supply

The ACR101 (CCID) requires a voltage of 5 V DC, 100 mA regulated power supply. It gets the power supply from the personal computer.

4.1. Status LED

Bicolor LED on the front of the reader indicates the activation status of the smart card and flash memory interface.

GREEN LED:

Flashing slowly (turns on 200ms for every 2 seconds)

Indicates smart card interface part is powered up and in the standby state. Either the smart card has not been inserted or the smart card has not been powered up (if it is inserted).

Lighting up

Indicates power supply to the smart card is switched on, i.e., the smart card is activated.

RED LED:

Lighting up

Indicates a communication between ACR101 (CCID) and flash memory.

Page 6 of 21

5.0. Smart Card Interface

The interface between the ACR101 (CCID) and the inserted smart card follows the specifications of ISO 7816-3.

5.1. Smart Card Power Supply VCC (C1)

The current consumption of the inserted card must not be higher than 50 mA.

5.2. Programming Voltage VPP (C6)

According to ISO 7816-3, the smart card contact C6 (VPP) supplies the programming voltage to the smart card. Since all common smart cards in the market are EEPROM based and do not require the provision of an external programming voltage, the contact C6 (VPP) has been implemented as a normal control signal in the ACR101 (CCID). The electrical specifications of this contact are identical to those of the signal RST (at contact C2).

5.3. Card Type Selection

The controlling computer has to always select the card type, through the proper command sent to the ACR101 (CCID) prior to activating the inserted card. This includes both the memory cards and MCU-based cards. For MCU-based cards the reader allows to select the preferred protocol, T=0 or T=1. However, this selection is only accepted and carried out by the reader through the PPS when the card inserted in the reader supports both protocol types. Whenever an MCU-based card supports only one protocol type, T=0 or T=1, the reader automatically uses that protocol type, regardless of the protocol type selected by the application.

5.4. Interface for Microcontroller-Based Cards

For microcontroller-based smart cards, only the contacts C1 (VCC), C2 (RST), C3 (CLK), C5 (GND) and C7 (I/O) are used. A frequency of 4 MHz is applied to the CLK signal (C3).

5.5. Card Tearing Protection

The ACR101 (CCID) provides a mechanism to protect the inserted card when it is suddenly withdrawn while it is powered up. The power supply to the card and the signal lines between the ACR101 (CCID) and the card are immediately deactivated when the card is being removed. As a general rule, however, to avoid any electrical damage, a card should only be removed from the reader while it is powered down.

Note: The ACR101 (CCID) never switches on the power supply to the inserted card by itself. This must be done by the controlling computer through the proper command sent to the reader.

Page 7 of 21

6.0. USB Interface

The ACR101 (CCID) is connected to a computer through a USB following the USB standard.

6.1. Communication Parameters

The ACR101 (CCID) is connected to a computer through USB as specified in the USB Specification. The ACR101 (CCID) is working in high speed mode, i.e. 480 Mbps, for the flash memory.

Pin	Signal	Function
1	VBUS	+5 V power supply for the reader
2	D-	Differential signal transmits data between ACR101 (CCID) and computer.
3	D+	Differential signal transmits data between ACR101 (CCID) and computer.
4	GND	Reference voltage level for power supply

6.2. Endpoints

The ACR101 (CCID) uses the following endpoints to communicate with the host computer:

Control Endpoint 0	For setup and control purposes
Bulk OUT Endpoint 1	For the command to be sent from host to Mass Storage Interface (data packet size is 64 bytes)
Bulk IN Endpoint 1	For response to be sent from Mass Storage Interface to host (data packet size is 64 bytes)
Bulk OUT Endpoint 2	For command to be sent from host to CCID Interface (data packet size is 16 bytes)
Bulk IN Endpoint 2	For response to be sent from CCID Interface to host (data packet size is 16 bytes)

Page 8 of 21

7.0. Communication Protocol

ACR101 (CCID) interfaces with the host via USB connection. It is a compounded device consisting of two interfaces: Chip Card Interface Device and Mass Storage.

The ACR101 (CCID) Smart Card Interface shares the same core as the smart card interface of the ACR38 CCID. The Smart Card Interface will be identified as "ACR38-112c" once the reader FW is obtained. CCID covers all the protocols required for operating smart cards and PIN.

Note: The command for this will be discussed later on.

The configurations and usage of USB endpoints on ACR101 (CCID) Smart Card Interface shall follow CCID Section 3. An overview is summarized below:

- 1. **Control Commands** are sent on control pipe (default pipe). These include class-specific requests and USB standard requests. Commands that are sent on the default pipe report information back to the host on the default pipe.
- 2. **CCID Events** are sent on the interrupt pipe.
- 3. **CCID Commands** are sent on *Bulk-OUT* endpoint. Each command sent to smart card reader has an associated ending response. Some commands can also have intermediate responses.
- 4. **CCID Responses** are sent on *Bulk-IN* endpoint. All commands sent to the smart card reader have to be sent synchronously. (i.e., *bMaxCCIDBusySlots* is equal to 1)

The supported CCID features by ACR101 (CCID) smart card interface are indicated in its Class Descriptor:

Offset	Field	Size	Value	Description
0	bLength	1	36h Size of this descriptor, in bytes.	
1	bDescriptorType	1	21h	CCID Functional Descriptor type.
2	bcdCCID	2	0100h	CCID Specification Release Number in binary-coded decimal.
4	bMaxSlotIndex	1	00h	One slot is available
5	bVoltageSupport	1	07h	The smart card reader can supply 1.8 V, 3.0 V and 5.0 V to its slot.
6	dwProtocols	4	00000003h	The smart card reader supports T=0 and T=1 Protocol
10	dwDefaultClock	4	00000FA0h	Default ICC clock frequency is 4 MHz
14	dwMaximumClock	4	00000FA0h	Maximum supported ICC clock frequency is 4 MHz
18	bNumClockSupported	1	00h	Does not support manual setting of clock frequency
19	dwDataRate	4	00002A00h	Default ICC I/O data rate is 10752 bps
23	dwMaxDataRate	4	0001F808h	Maximum supported ICC I/O data rate is 344 Kbps
27	bNumDataRatesSupported	1	00h	Does not support manual setting of data rates
28	dwMaxIFSD	4	00000Feh	Maximum IFSD supported by the smart card reader for protocol T=1 is 254

Page 9 of 21

Advanced Card Systems Ltd. Card & Reader Technologies

Offset	Field	Size	Value	Description
32	dwSynchProtocols	4	00000000h	The smart card reader does not support synchronous card
36	dwMechanical	4	00000000h	The smart card reader does not support special mechanical characteristics
40	dwFeatures	4	00010030h	 The smart card reader supports the following features: Automatic ICC clock frequency change according to parameters Automatic baud rate change according to frequency and FI,DI parameters TPDU level exchange with the smart card reader
44	dwMaxCCIDMessageLength	4	0000010Fh	Maximum message length accepted by the smart card reader is 271 bytes
48	bClassGetResponse	1	00h	Insignificant for TPDU level exchanges
49	bClassEnvelope	1	00h	Insignificant for TPDU level exchanges
50	wLCDLayout	2	0000h	No LCD
52	bPINSupport	1	00h	No PIN Verification
53	bMaxCCIDBusySlots	1	01h	Only 1 slot can be simultaneously busy

7.1. Command to the ACR101 (CCID)

In a normal operation, the ACR101 (CCID) acts as a slave device with regards to the communication between a computer and the reader. The communication is carried out in the form of successive command-response exchanges. The computer transmits a command to the reader and receives a response from the reader after the command has been executed. A new command can be transmitted to the ACR101 (CCID) only after the response to the previous command has been received.

There are two cases where the reader transmits data without having received a command from the computer, namely, the *Reset Message* of the reader and the *Card Status Message*.

7.1.1. CCID Command Pipe Bulk-OUT Messages

The ACR101 (CCID) shall follow the *CCID Bulk-OUT Messages* as specified in CCID Section 4. In addition, this specification defines some extended commands for operating additional features. This section lists the CCID Bulk-OUT messages to be supported by ACR101 (CCID).

7.1.1.1. PC_to_RDR_IccPowerOn

Offset	Field	Size	Value	Description
0	bMessageType	1	62h	
1	dwLength	4	00000000h	Size of extra bytes of this message
2	bSlot	1		Identifies the slot number for this command
5	bSeq	1		Sequence number for command
6	bPowerSelect	1		Voltage that is applied to the ICC 00h – Automatic Voltage Selection 01h – 5 volts 02h – 3 volts
7	abRFU	2		Reserved for future use

Activate the card slot and return ATR from the card.

The response to this message is the *RDR_to_PC_DataBlock* message and the data returned is the Answer-To-Reset (ATR) data.

7.1.1.2. PC_to_RDR_lccPowerOff

Deactivate the card slot.

Offset	Field	Size	Value	Description
0	bMessageType	1	63h	
1	dwLength	4	00000000h	Size of extra bytes of this message
5	bSlot	1		Identifies the slot number for this command
6	bSeq	1		Sequence number for command
7	abRFU	3		Reserved for future use

The response to this message is the *RDR_to_PC_SlotStatus* message.

7.1.1.3. PC_to_RDR_GetSlotStatus

Get current status of the slot.

Offset	Field	Size	Value	Description
0	bMessageType	1	65h	
1	dwLength	4	00000000h	Size of extra bytes of this message
5	bSlot	1		Identifies the slot number for this command
6	bSeq	1		Sequence number for command
7	abRFU	3		Reserved for future use

The response to this message is the *RDR_to_PC_SlotStatus* message.

7.1.1.4. PC_to_RDR_XfrBlock

Transfer data block to the ICC.

Offset	Field	Size	Value	Description
0	bMessageType	1	6Fh	
1	dwLength	4		Size of abData field of this message
5	bSlot	1		Identifies the slot number for this command
6	bSeq	1		Sequence number for command
7	bBWI	1		Used to extend the CCIDs Block Waiting Timeout for this current transfer. The CCID will timeout the block after "this number multiplied by the Block Waiting Time" has expired.
8	wLevelParameter	2	0000h	RFU (TPDU exchange level)
10	abData	Byte array		Data block sent to the CCID. Data is sent "as is" to the ICC (TPDU exchange level)

The response to this message is the *RDR_to_PC_DataBlock* message.

7.1.1.5. PC_to_RDR_GetParameters

Get slot parameters.

Offset	Field	Size	Value	Description
0	bMessageType	1	6Ch	
1	DwLength	4	00000000h	Size of extra bytes of this message
5	BSlot	1		Identifies the slot number for this command
6	BSeq	1		Sequence number for command

Page 12 of 21

Advanced Card Systems Ltd. Card & Reader Technologies

Offset	Field	Size	Value	Description
7	AbRFU	3		Reserved for future use

The response to this message is the *RDR_to_PC_Parameters* message.

7.1.1.6. PC_to_RDR_ResetParameters

Reset slot parameters to default value.

Offset	Field	Size	Value	Description				
0	bMessageType	1	6Dh					
1	DwLength	4	4 0000000h Size of extra bytes of this					
5	BSlot	1		Identifies the slot number for this command				
6	BSeq	1		Sequence number for command				
7	AbRFU	3		Reserved for future use				

The response to this message is the *RDR_to_PC_Parameters* message.

7.1.1.7. PC_to_RDR_SetParameters

Set slot parameters.

Offset	Field	Size	Value	Description
0	bMessageType	1	61h	
1	dwLength	4		Size of extra bytes of this message
5	bSlot	1		Identifies the slot number for this command
6	bSeq	1		Sequence number for command
7	bProtocolNum	1		Specifies what protocol data structure follows. 00h = Structure for protocol T=0 01h = Structure for protocol T=1 The following values are reserved for future use. 80h = Structure for 2-wire protocol 81h = Structure for 3-wire protocol 82h = Structure for I2C protocol
8	abRFU	2		Reserved for future use
10	abProtocolDataStr ucture	Byte array		Protocol Data Structure

Protocol Data Structure for Protocol T=0 (*dwLength=0000005h*)

Offset	Field	Size	Value	Description			
10	bmFindexDindex	1		 B7-4 – FI – Index into the table 7 in ISO/IEC 7816-3:1997 selecting a clock rate conversion factor. B3-0 – DI – Index into the table 8 in ISO/IEC 7816-3:1997 selecting a baud rate conversion factor. 			
11	bmTCCKST0	1		B0 – 0b, B7-2 – 000000b B1 – Convention used (b1=0 for direct, b1=1 for inverse) Note: The CCID ignores this bit.			
12	bGuardTimeT0	1		Extra Guardtime between two characters. Add 0 to 254 etu to the normal guardtime of 12 etu. FFh is the same as 00h.			
13	bWaitingIntegerT0	1		WI for T=0 used to define WWT			
14	bClockStop	1		ICC Clock Stop Support 00h = Stopping the Clock is not allowed 01h = Stop with Clock signal Low 02h = Stop with Clock signal High 03h = Stop with Clock either High or Low			

Protocol Data Structure for Protocol T=1 (*dwLength=0000007h*)

Offset	Field	Size	Value	Description
10	bmFindexDindex	1		 B7-4 - FI - Index into the table 7 in ISO/IEC 7816-3:1997 selecting a clock rate conversion factor. B3-0 - DI - Index into the table 8 in ISO/IEC 7816-3:1997 selecting a baud rate conversion factor.
11	BmTCCKST1	1		 B7-2 - 000100b B0 - Checksum type (b0=0 for LRC, b0=1 for CRC) B1 - Convention used (b1=0 for direct, b1=1 for inverse) Note: The CCID ignores this bit.
12	BGuardTimeT1	1		Extra Guardtime (0 to 254 etu between two characters). If value is FFh, then guardtime is reduced by 1 etu.
13	BwaitingIntegerT1	1		B7-4 = BWI values 0-9 valid B3-0 = CWI values 0-Fh valid

Page 14 of 21

Advanced Card Systems Ltd. Card & Reader Technologies

Offset	Field	Size	Value	Description
14	bClockStop	1		ICC Clock Stop Support 00h = Stopping the Clock is not allowed 01h = Stop with Clock signal Low 02h = Stop with Clock signal High 03h = Stop with Clock either High or Low
15	bIFSC	1		Size of negotiated IFSC
16	bNadValue	1	00h	Only support NAD = 00h

The response to this message is the *RDR_to_PC_Parameters* message.

Page 15 of 21

7.1.2. CCID Bulk-IN Messages

The Bulk-IN messages are used in response to the Bulk-OUT messages. ACR101 (CCID) shall follow the *CCID Bulk-IN Messages* as specified in CCID Section 4. This section lists the CCID Bulk-IN messages to be supported by ACR101 (CCID).

7.1.2.1. RDR_to_PC_DataBlock

This message is sent by the smart card reader in response to *PC_to_RDR_IccPowerOn*, *PC_to_RDR_XfrBlock* and *PC_to_RDR_Secure* messages.

Offset	Field	Size	Value	Description
0	bMessageType	1	80h	Indicates that a data block is being sent from the CCID
1	dwLength	4		Size of extra bytes of this message
5	bSlot	1		Same value as in Bulk-OUT message
6	bSeq	1		Same value as in Bulk-OUT message
7	bStatus	1		Slot status register as defined in CCID section 4.2.1
8	bError	1		Slot error register as defined in CCID section 4.2.1 and its specification in section 5.2.8
9	bChainParameter	1	00h	RFU (TPDU exchange level)
10	abData	Byte array		This field contains the data returned by the CCID

7.1.2.2. RDR_to_PC_SlotStatus

This message is sent by the smart card reader in response to *PC_to_RDR_lccPowerOff*, *PC_to_RDR_GetSlotStatus*, *PC_to_RDR_Abort* messages and class specific *ABORT* request.

Offset	Field	Size	Value	Description		
0	bMessageType	1	81h			
1	dwLength	4	00000000h	Size of extra bytes of this message		
5	bSlot	1		Same value as in Bulk-OUT message		
6	bSeq	1		Same value as in Bulk-OUT message		
7	bStatus	1		Slot status register as defined in CCID section 4.2.1		
8	bError	1		Slot error register as defined in CCID section 4.2.1 and its specification in section 5.2.8		
9	bClockStatus	1		value = 00h Clock running 01h Clock stopped in state L 02h Clock stopped in state H 03h Clock stopped in an unknown state All other values are RFU.		

Page 16 of 21

7.1.2.3. RDR_to_PC_Parameters

This message is sent by the smart card reader in response to *PC_to_RDR_GetParameters*, *PC_to_RDR_ResetParameters* and *PC_to_RDR_SetParameters* messages.

Offset	Field	Size	Value	Description
0	bMessageType	1	82h	
1	dwLength	4		Size of extra bytes of this message
5	bSlot	1		Same value as in Bulk-OUT message
6	bSeq	1		Same value as in Bulk-OUT message
7	bStatus	1		Slot status register as defined in CCID section 4.2.1
8	bError	1		Slot error register as defined in CCID section 4.2.1 and its specification in section 5.2.8
9	bProtocolNum	1		Specifies what protocol data structure follows. 00h = Structure for protocol T=0 01h = Structure for protocol T=1 The following values are reserved for future use. 80h = Structure for 2-wire protocol 81h = Structure for 3-wire protocol 82h = Structure for 12C protocol
10	abProtocolDataStructure	Byte array		Protocol Data Structure as summarized in section 5.2.3.

Page 17 of 21

7.1.3. Commands Accessed via PC_to_RDR_XfrBlock

7.1.3.1. GET_READER_INFORMATION

This command returns relevant information about the particular smart card reader model and the current operating status such as the firmware revision number, the maximum data length of a command and response, the supported card types, and whether a card is inserted and powered up or not.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of SCardConnect() API, please refer to PC/SC specification.

	Pseudo-APDU													
CLA	INS	P1	P2	Lc										
FFh	09h	00h	00h	10h										

Command format (*abData* field in the *PC_to_RDR_XfrBlock*)

FIRMWARE								MAX_C	MAX_R	C _1	ГҮРЕ	C_SEL	C_STAT

Response data format (*abData* field in the *RDR_to_PC_DataBlock*)

FIRMWARE	10 bytes	data for firmware	version
----------	----------	-------------------	---------

- MAX_C The maximum number of command data bytes.
- **MAX_R** The maximum number of data bytes that can be requested to be transmitted in a response.
- **C_TYPE** The card types supported by the smart card reader. This data field is a bitmap with each bit representing a particular card type. A bit set to '1' means the corresponding card type is supported by the reader and can be selected with the *SELECT_CARD_TYPE* command. The bit assignment is as follows:

Byte	1							2									
card type	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0	
		See Appendix A for the correspondence between these bits and the respective card types.												etween these bits and the			
C_SEL		The bee					lect	ted	ca	rd t	ype	. A	val	ue	of ()0h	means that no card type has
C_STAT		Indicates whether a card is physically inserted in the reader and whether the card is powered up:										n the reader and whether the					
		00h: no card inserte								ed							
		01h: card inserted,								not powered up							

03h: card powered up

Page 18 of 21

7.2. Mass Storage

Mass Storage Device Class specifies all the protocols required for data transaction between Host (computer) and storage devices. The configurations and usage of USB endpoints on ACR101 (CCID) shall follow *Mass Storage Class Bulk-Only Transport* in Section 3 (Protocol Code) of the USB Mass Storage Device Specification. This document is available at: www.usb.org.

An overview of this specification is summarized below:

- 1. **Control Commands** are sent on control pipe (default pipe). It is shared with the CCID interface.
- 2. **Data-Out Command** Protocol uses the *Bulk-OUT* endpoint to transfer data from the host to the device.
- 3. **Data-In Command** Protocol uses the *Bulk-IN* endpoint to transfer data from the device or to return status about the device.

Page 19 of 21

Appendix A. Supported Card Types

The following table is a list of the card types returned by *GET_READER_INFORMATION* corresponding with the respective card type code:

Card type code	Card Type
00h	Auto-select T=0 or T=1 communication protocol
01h	I2C memory card (1, 2, 4, 8 and 16 kilobits)
02h	I2C memory card (32, 64, 128, 256, 512 and 1024 kilobits)
03h	Atmel® AT88SC153 secure memory card
04h	Atmel® AT88SC1608 secure memory card
05h	Infineon® SLE4418 and SLE4428
06h	Infineon® SLE4432 and SLE4442
07h	Infineon® SLE4406, SLE4436 and SLE5536
08h	Infineon® SLE4404
09h	Atmel® AT88SC101, AT88SC102 and AT88SC1003
0Ch	MCU-based cards with T=0 communication protocol
0Dh	MCU-based cards with T=1 communication protocol

Page 20 of 21

Appendix B. Response Status Codes

The following table is a list of the error codes that may be returned by the ACR38:

Error Code	Status
FFh	SLOTERROR_CMD_ABORTED
FEh	SLOTERROR_ICC_MUTE
FDh	SLOTERROR_XFR_PARITY_ERROR
FCh	SLOTERROR_XFR_OVERRUN
FBh	SLOTERROR_HW_ERROR
F8h	SLOTERROR_BAD_ATR_TS
F7h	SLOTERROR_BAD_ATR_TCK
F6h	SLOTERROR_ICC_PROTOCOL_NOT_SUPPORTED
F5h	SLOTERROR_ICC_CLASS_NOT_SUPPORTED
F4h	SLOTERROR_PROCEDURE_BYTE_CONFLICE
F3h	SLOTERROR_DEACTIVATED_PROTOCOL
F2h	SLOTERROR_BUSY_WITH_AUTO_SEQUENCE
E0h	SLOTERROR_CMD_SLOT_BUSY

Android is a trademark of Google Inc. Atmel is registered trademark of Atmel Corporation or its subsidiaries, in the US and/or other countries. Infineon is a registered trademark of Infineon Technologies AG. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. MIFARE and MIFARE Classic are registered trademarks of NXP B.V. and are used under license.

Page 21 of 21